top of page
Search

Eugene Thacker In The Dust Of This Planet Pdf Free: A Radical Critique of Modernity and Culture

menadagho1985


David: That's the inevitability that you see in the new reports and the reports are bending over backwards to try and find ways to be optimistic. The report says, "If you put into place all of these technologies and international agreements, we could still stop warming at two degrees." My own assessment is that the kinds of actions you'd need to do that are so heroic that we're not going to see them on this planet.


Jad: Call it nihilism, pessimism, whatever, shouldn't it be depressing? Why would you want to put a phrase like in the dust of this planet, a phrase that deliberately negates the person wearing it, why would you want to put it on your chest or on your back? Since it was Jay-Z's jacket, which was in a way, the catalyst for this whole podcast, we decided to talk to him, sort of. That's coming up.




Eugene Thacker In The Dust Of This Planet Pdf Free



Jad: Hey, this is Jad. This is Radiolab. We ended up in the flow of things as we're trying to figure out like in the dust of this planet, why is that cool? Why isn't that just scary and depressing? We ended up with--


Jad: It occurred to me and Andy and I during the interview that June has probably influenced the fashion sense of a significant portion of the human beings on this planet. She was very clear that a costume is more than just a costume.


Artifacts made of cellulose, such as ancient documents, pose a significant experimental challenge in the terahertz transmission spectra interpretation due to their small optical thickness. In this paper, we describe a method to recover the complex refractive index of cellulose fibers from the terahertz transmission data obtained on single freely standing paper sheets in the (0.2-3.5)-THz range. By using our technique, we eliminate Fabry-Perot effects and recover the absorption coefficient of the cellulose fibers. The obtained terahertz absorption spectra are explained in terms of absorption peaks of the cellulose crystalline phase superimposed to a background contribution due to a disordered hydrogen-bond network. The comparison between the experimental spectra with terahertz vibrational properties simulated by density-functional-theory calculations confirms this interpretation. In addition, evident changes in the terahertz absorption spectra are produced by natural and artificial aging on paper samples, whose final stage is characterized by a spectral profile with only two peaks at about 2.1 and 3.1 THz. These results can be used to provide a quantitative assessment of the state of preservation of cellulose artifacts.


We have carried out a detailed study of the spectral nature of six pulsars surrounded by pulsar wind nebulae (PWNe). The pulsar flux density was estimated using the interferometric imaging technique of the Giant Metrewave Radio Telescope at three frequencies 325, 610, and 1280 MHz. The spectra showed a turnover around gigahertz frequency in four out of six pulsars. It has been suggested that the gigahertz-peaked spectrum (GPS) in pulsars arises due to thermal absorption of the pulsar emission in surrounding medium like PWNe, H II regions, supernova remnants, etc. The relatively high incidence of GPS behaviour in pulsars surrounded by PWNe imparts further credence to this view. The pulsar J1747-2958 associated with the well-known Mouse nebula was also observed in our sample and exhibited GPS behaviour. The pulsar was detected as a point source in the high-resolution images. However, the pulsed emission was not seen in the phased-array mode. It is possible that the pulsed emission was affected by extreme scattering causing considerable smearing of the emission at low radio frequencies. The GPS spectra were modelled using the thermal free-free absorption and the estimated absorber properties were largely consistent with PWNe. The spatial resolution of the images made it unlikely that the point source associated with J1747-2958 was the compact head of the PWNe, but the synchrotron self-absorption seen in such sources was a better fit to the estimated spectral shape.


We report surface-plasmon mediated total absorption of light into a silicon substrate. For an Au grating on Si, we experimentally show that a surface-plasmon polariton (SPP) excited on the air/Au interface leads to total absorption with a rate nearly 10 times larger than the ohmic damping rate of collectively oscillating free electrons in the Au film. Rigorous numerical simulations show that the SPP resonantly enhances forward diffraction of light to multiple orders of lossy waves in the Si substrate with reflection and ohmic absorption in the Au film being negligible. The measured reflection and phase spectra reveal a quantitative relation between the peak absorbance and the associated reflection phase change, implying a resonant interference contribution to this effect. An analytic model of a dissipative quasi-bound resonator provides a general formula for the resonant absorbance-phase relation in excellent agreement with the experimental results.


This paper presents research results on color centers induced by radiation of a xenon lamp in non doped crystals of yttrium aluminum garnet Y3Al5O12 (YAG), strontium- lanthanum aluminate SrLaAlO4 (SLAO), strontium-lanthanum gallate SrLaGa3O7 (SLGO), and in doped crystals: Nd:YAG, Cr, Tm, Ho:YAG (CTH:YAG), Nd:SLAO and Nd:SLGO. In all these investigated crystals under the influence of intensive exposure by xenon lamp radiation additional bands connected with centers O-2, O2 and centers F came up near the short-wave absorption edge. In the case of doped crystals the observed processes are much more complicated. In crystals CTH:YAG the greatest perturbations in relation to basic state are present at the short-wave absorption edge, as well as on areas of absorption bands of ions Cr+3 and Tm+3 conditioning the sensibilization process of ions Ho+3. These spectral structure disturbances essentially influence the efficiency of this process, as proven during generating investigations. In the case of SrLaGa3O7:Nd+3 under the influence of exposure substantial changes of absorption spectrum occurred on spectral areas 346 divided by 368 nm, 429 divided by 441 nm and 450 divided by 490 nm. Those changes have an irreversible character. They disappear not before the plate is being held at oxidizing atmosphere. Investigations of laser rods Nd:SLGO, CTH:YAG, and Nd:YAG in a free generation demonstrated that the color centers of these crystals are induced by pomp radiation from the spectral area up to 450 nm.


Laser fusion projects are heading for IR optics with high broadband transmission, high shock and temperature resistance, long laser durability, and best purity. For this application, fused silica is an excellent choice. The energy density threshold on IR laser optics is mainly influenced by the purity and homogeneity of the fused silica. The absorption behavior regarding the hydroxyl content was studied for various synthetic fused silica grades. The main absorption influenced by OH vibrational excitation leads to different IR attenuations for OH-rich and low-OH fused silica. Industrial laser systems aim for the maximum energy extraction possible. Heraeus Quarzglas developed an Yb-doped fused silica fiber to support this growing market. But the performance of laser welding and cutting systems is fundamentally limited by beam quality and stability of focus. Since absorption in the optical components of optical systems has a detrimental effect on the laser focus shift, the beam energy loss and the resulting heating has to be minimized both in the bulk materials and at the coated surfaces. In collaboration with a laser research institute, an optical finisher and end users, photo thermal absorption measurements on coated samples of different fused silica grades were performed to investigate the influence of basic material properties on the absorption level. High purity, synthetic fused silica is as well the material of choice for optical components designed for DUV applications (wavelength range 160 nm - 260 nm). For higher light intensities, e.g. provided by Excimer lasers, UV photons may generate defect centers that effect the optical properties during usage, resulting in an aging of the optical components (UV radiation damage). Powerful Excimer lasers require optical materials that can withstand photon energy close to the band gap and the high intensity of the short pulse length. The UV transmission loss is restricted to the DUV wavelength range below 300 nm and


This synthetic-aperture radar image was obtained by NASA's Cassini spacecraft during its T-120 pass over Titan's southern latitudes on June 7, 2016. The area shown here measures about 40 by 60 miles (70 by 100 kilometers) and is centered at about 60 degrees south latitude, 130 degrees west longitude. Radar illuminates the scene from the left at a 28-degree incidence angle. At the center of the image is a bright feature oriented from upper left to lower right. This is interpreted to be a long ridge with jagged peaks, likely created by methane rainfall erosion. Some of the individual peaks rise about 2,400 feet (800 meters) above the valley floor. The ridge has a considerably gentler slope on its left side (which appears brighter here) than on its right. Frequently, mountains shaped like this on Earth are fractured blocks of the planet's crust, thrusted upward and then tilted, creating a shallow slope on one side and a steeper slope on the fractured, faulted edge. Also presented here is an annotated version of the image, along with a radar image of the Dragoon Mountains in Arizona just east of Tucson. The Dragoon feature represents a tilted fault block, formed by spreading that has occurred across the western U.S., and has a similar shape to that of the Titan ridge. The Dragoon radar image was produced using data from NASA's Shuttle Radar Topography Mission (credit: NASA/JPL-Caltech/NGA). Radar illuminates the scene from the left in that image as well. Titan has displayed many features that are strikingly similar to Earth: lakes, seas, rivers, dunes and mountains. Scientists think it possible that, like Earth, the giant moon's crust has experienced familiar processes of uplift and spreading, followed by erosion.


2ff7e9595c


2 views0 comments

Recent Posts

See All

Comments


bottom of page